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About me

• Marcin Bis

• Embedded Linux (from
administration to programming:
system, kernel, device drivers)

• Trainings, consulting, support
(http://bis-linux.com)

• Industrial appliances (Linux +
Real-Time)
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Goals

• To get familiar with Embedded Linux @ Freescale platforms.

• To provide an in-depth uderstanding of Embedded Linux, and Real-Time
derivatives of Linux.

• To enable You to put together a working Embedded Linux system with "rich
GUI" application.

• To teach how an Open Source softare is developed and how to make
advantage of this process.

We will also build a working ICS (industrial control system) - a laser.
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Agenda I

1 Why to consider Linux?

2 Let’s build ICS

3 What we will need (hardware + tools)?

4 Real-Time

5 ICS using PREEMPT-RT

6 ICS using Xenomai

7 ICS using multiple processors (cores)
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Why to consider Linux?
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Plan

1 Why to consider Linux?
Pros ...
... and cons
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Why to consider Linux?

Booming usage of Linux in embedded environments. From consumer
electronics to industrial control devices.

• Hardware capable of running Linux become cheaper.

• Linux supports lots of hardware, as well as communication protocols.

• Security is easy to achieve.

• Code is easy to develop and reusable.

• Android - customized Linux system.
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Sourcecode and its licence (GPL)

No additional fees: no per-device licence cost, no need to
upgrade constantly.

E.g. Availability of the source code, lets you easily upgrade old
system/product to the latest protocols and drivers.

Linux support all embedded SoC features. Device connectivity features are
implemented in universal frameworks.

• SOC drivers

• I2C, SPI, GPIO

• Flash (including flash-transaction-layers) and flash aware file systems (UBIFS,
JFFS2)

• EEPROM

• I/O expanders, custom embedded parts

• networking controllers, including Wireless.
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Mixing GPL with proprietary

You can add your proprietary applications, of course. . .
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Vast array of development tools.

Do you want to build a customer-programmable device?

Let user program it in C, C++, Java, Python, Perl, PHP, Lua and even more.

Tool-chain can be provided at no additional cost (because it is open-source).

E.g. Python programmed "software PLC" device. Customer likes it to be Java
programmable - not a big issue in Linux.
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Network connectivity. Vast array of applications

Stable, secure and efficient networking stack.

TCP/IP and variety of application-level protocols.

Easy encryption integration. WiFi, broadband, Bluetooth and other protocols.
VNC, Web Server, ftp, SSH...

Examples:

• Consumer device, connected to local network is recognized by Windows and
Apple computers as a network neighbourhood party. In order to emulate
windows behaviour it runs a cut down SMB, NetBIOS, Upnp stack.

• Device shall be easily accessible from smartphone (web browser), using secure
protocol as well as a VPN connection.

• Secure (encrypted) firmware update over the network - no more STUXNET.

Why to consider Linux? Pros ... 11 / 89



Portability

Design and write our software once. . . compile, run and deploy everywhere.

• Application is Linux-base rather than microcontroller-based.

• Can be developed and tested on a PC.

• There is variety of available libraries and options.

• Easy: GUI, input and display support.

You are no longer facing vendor lock-in!. Software can be easily ported to
another Linux SBC.

E.g. Demonstrate application running on RaspberryPI, as well as on some
more secure and manufacturing friendly platform.

If application specification needs Real-Time response. There are a few ways
to transform a Linux system into Real-Time operating system.
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Scalability

Easily implement customers demand. Even one-time wishes.

Lower cost of developing one-time software variants:

• Let’s use twice as big screen.

• Or add barcode reader and rotary encoder.

• We want to control device remotely via IP connection.

• . . . but customer’s network is running IPv6.

• OK, and now let’s display user interface in Russian/Chinese
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Caveats and disadvantages

You:

• Learning curve.
There is a great amount of knowledge to get familiar with. Variety of skills: from
electronics design to system administration is needed to make a "helicopter
view of a system".

• Fragmented knowledge.
Linux is a go-fast technology rather than finished project. There is no central
knowledge base nor single vendor providing support (actually there are many of
them). Relevant support can be difficult to find on the Internet or applicable only
to specific version of source code.
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Learning curve

Simple project: bare-processor or RTOS applications are easy to establish -
just install BSP and get familiar with documentation.

Linux project: knowledge of the whole software stack is needed. But,
afterwards, adding sophisticated features is very easy.
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Caveats and disadvantages

Your Product:

• Memory footprint.
Power and space limitations. Microcontroller systems used for many tasks has
(e.g.) 16kB of RAM and 128kB of Flash in single chip. Typical universal Linux
SBC with network connectivity and full user interface has 64MB of RAM and
256MB of Flash. Even small Linux system needs 32MB RAM/8MB Flash.

• Development Tools.
Most Linux system development and debugging can be done using Eclipse,
although there is no install and ready solution (like tools for various
microcontrollers). IDE has to be properly configured by a user.
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- So: is Linux the answer for You?

- No! Linux is a question to consider.

Definitively worth considering.
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Let’s build ICS
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2 Let’s build ICS
Case 1 - Weight dosing
Case 1 - analysis
Case 2 - Laser
Case 2 - analysis
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Weight-dosing process - specification

Loose material (or fluid)
is loaded into containers.

• the main tank is suspended on weight (tensometer)

• conveyor or robot provides containers, appearance
of the container triggers interrupt

• the valve opens, and the material is poured into a
container

• amount of material is measured by reading data
from the weight

• main tank has a limited capacity, it can be
replenished from main silo by turning on vacuum

• if vacuum is turned on, it has to work for some
minimum time, while vacuum is working, material
cannot be poured.

Let’s build ICS Case 1 - Weight dosing 20 / 89



Weight-dosing process - analysis

Weight dosing process can be modelled as a finite state machine.

Process starts on WAIT_ON_TRIGGER state. If triggered, it runs on timer
(1ms).
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Weight-dosing process - implementation goals

Hardware

• PC for development, Ubuntu 12.04

• Freescale Board

GUI part

• written in QT/C++

• userspace components provided by: Buildroot or LTIB or YOCTO or something
else...

• ext4 on SD card as primary storage or NAND flash storage

Real-Time operations

• implemented as separate process in C

• which allows easy porting

• communicates with GUI using shared memory and message queue, in a
lockless way:

• two control structures are stored in SHM
• one is utilized by running process, other can be changed by GUI
• then structs are switched
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System boot constraint: must be operational under 10s ( 2.5s RT task, 8-9s GUI).
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UML
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Laser - spec

• PWM controlled laser diode (actually real lasers power circuits are far more
complicated)

• period: 200µs

• laser must send a given set of pulses

• laser operation is trigerred by user pressing button

Actual model implemented with laser pointer.

• Pressing button trigers PWM for exacly 900ms

• Button both: virtual and physical
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Laser
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Laser
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What we will need (hardware + tools)?
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3 What we will need (hardware + tools)?
Options
MQX Lite
Linux
Linux + MQX
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Using Linux...

Weight dosing - pneumatics are used (actuator latency is 15ms).

Threads - share virtual memory, have different scheduling settings.

Welding machine - µs
Medical laser controller - µs (or even less)

Xenomai provides better latency and predictability.

Special hardware can be utilized too:
- two processors: eg. additional Cortex-M for running worker task
- multicore systems: eg. Freescale Vybrid (Cortex-A5 + Cortex-M4)
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Why not?
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i.MX53
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i.MX6 Quad
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Vybrid
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Real-Time
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4 Real-Time
Theory
Latency tests
Testing circuit
Unmodified Linux kernel
Real-Time - concepts
Real-Time - measurements
Not so good results ...
Where is latency coming from?
How to achieve Real-Time in Linux?
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What Real-Time really means?

Popular definition

Correctness of operation depends not
only on whether performed without error,
but also on the time (the upper limit) in
which the operation completed.
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And in practice

Practical definition

RT system is one in which can be proved
that any required operation will be
completed in a certain time.

• Mathematical proof would be perfect. Unfortunately systems are so complex, it
is not possible.

• System is tested (TDD). If deadlines are met (under load) for all use-cases,
system is Real-Time.
Note: In some cases (eg. certification for safety-critical tasks), full-code
coverage would be needed!
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Real-Time vs. Real-Fast

• Linux kernel is designed to be „democratic”

• resources are equally disposed
• eg.: scheduler avoids process starvation

• Usually, determinism is not taken into account

• throughput is.
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Real-Time vs. Real-Fast ...

Most layers and subsystems are complex:
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What are we testing?
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Reference circuit

Input is triggered on falling and rising edge, output state changes according to
input.

In this case, we are using GPIO pin-s.
Input can be other external or internal: timer,
camera, network PHY, ADC etc.
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Driver design

01_inout.c

02_uinout.c

Code is on GitHub:
https://github.com/marcinbis/mb-rt-data.git
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Results
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Concepts

Deadline

Point in time, before which the action (system response) must occur.

• Hard Real-Time - deadline must be meet (fatal error if not).

• Firm Real-Time - deadline should be meet (system response is useless
otherwise).

• Soft Real-Time - deadline should be meet, but nothing critical will happen if not
(eg. decreased user experience, sample drop ...).

Latency

The time between the moment in which the action was to occur, and in which,
in fact, occurred.
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Concepts

Jitter

Undesired deviation of latency. For various reasons, latency is not constant.
Too large jitter, renders system unusable for data acquisition.

Predictability

How much time, the action will take (eg. from IRQ occurred to handler finished
executing).
O(1) algorithms should be used.

Worst Case

Due to imperfect nature of real-world systems, we are considering the Worst
Case.

We have to know the latency in worst possible case.
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Let’s add some load

$ cat /proc/loadavg
5.02 3.76 2.04 2/47 432

• I/O on SD card:

cat /dev/mmcblk0p1 > /dev/null

• sending ASCII data to serial console:

cat /dev/zero | od -v

• send network packages:

ping -f <ip address>

WARNING!: these tests just generate IRQ, they are not showing real-life load.
Use real-case tests.
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Results under load
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Linux:
Separates:

• logic (in userspace)

• mechanisms (provided by kernel)
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Interrupt-based I/O
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Interrupt-based I/O - another view

• 03_cinout.c

• 04_real_cinout.c

• In case of GPIO: /sys/class/gpio/ can be used as well (poll(),
read(), write()).
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Userspace - results under load
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Userspace - results under load
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Where is latency coming from?
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How to achieve Real-Time in Linux?

1 Micro-kernel approach:

• RTLinux -
http://en.wikipedia.org/wiki/RTLinux,
there used to be open-source version:
http://www.rtlinuxfree.com/.

• Adeos/I-Pipe -
http://home.gna.org/adeos/ - common
base.

• RTAI - https://www.rtai.org/ - minimum
possible latency.

• Xenomai - http://www.xenomai.org/ -
provides various APIs.

2 In-kernel approach:

• RT PREEMPT -
https://rt.wiki.kernel.org
http://www.kernel.org/pub/linux/
kernel/projects/rt/
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. . . or use hardware solutions

1 Dual processor/microcontroller approach

• Dual/Quad Core i.MX6 - devote one core to
Real-Time task.

• Additional µC - add (cheap) microcontroller and
run RTOS on it (ore bare-metal app).

2 Heterogenous cores:

• Freescale Vybrid
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ICS using PREEMPT-RT
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5 ICS using PREEMPT-RT
PREEMPT-RT
Implementation
Internal latency measurements
Demo
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1 Standard kernel

2 Interrupts as threads

Kernel Features --->
Preemption Mode (Complete Preemption ()) --->

(X) Complete Preemption (Real-Time)

-*- Thread Softirqs /* 2.6.33 */
-*- Thread Hardirqs
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04 under load
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04 under load
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• Real-Time != Real Fast
Maximum latency (Worst Case) is limited, but minimum latency is bigger.

• Kernel with RT-PREEMPT patch, does not make the whole system Real-Time

• Specially designed application and POSIX RT-API should be used:

• Defined: IEEE 1003.1b. Linux supports it.
• Scheduler
• Memory locking
• Shared memory
• RT signals
• Semaphores (priority inheritance)
• Timers (esp. CLOCK_MONOTONIC)
• AIO
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Tips&Tricks

Use appropriate programming language

• C - but make it object-oriented (for reference - Linux kernel: buses, drivers,
classes etc.)

• C++ - would be nice too

• cannot be utilized inside kernel or as Xenomai kernel process
• can be executed as bare-metal µC or in userspace

• Utilize design patterns.
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Tips&Tricks

Set the proper scheduler class and priority

struct sched_param sp;
sp.sched_priority = MY_PRIORITY;
ret = sched_setscheduler(0, SCHED_FIFO, &sp);

• Interrupts run in threads, default to: SHCED_FIFO/50.

• . . . do not forget to fine-tune them.

• SCHED_DEADLINE can be helpful too.
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Lock all memory (mlock)

mlockall(MCL_CURRENT|MCL_FUTURE);

Try to cause page_fault (allocated memory, data from files)

buf = malloc(BUF_SIZE);
memset(buf, 0, BUF_SIZE);

• Memory is locked, so it stays on place.
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Prefault the stack (it can be shared within process we have forked from)

/* GCC will not inline this function */
__attribute__ ((noinline)) void stack_prefault(void)
{

unsigned char tab[MAX_SAFE_STACK];
/* GCC will omit optimizations */
asm("");
memset(tab, 0, MAX_SAFE_STACK);

}
/*...*/
stack_prefault();

ICS using PREEMPT-RT Implementation 69 / 89



Use POSIX timer to do the fsm step (in a proper way)

#define NSEC_IN_SEC 1000000000l
#define INTERVAL 1000000l
struct timespec timeout;

clock_gettime(CLOCK_MONOTONIC, &timeout);
while (1) {

do_fsm_step(&some_data);
timeout.tv_nsec += INTERVAL;
if (timeout.tv_nsec >= NSEC_IN_SEC) {

timeout.tv_nsec -= NSEC_IN_SEC;
timeout.tv_sec++;

}
clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,

&timeout, NULL);
}
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Utilize AIO to write or read data (eg. sensor data, production logs)

struct aiocb {
int aio_fildes //File descriptor.
volatile void *aio_buf //Location of buffer.
/* ... */

};
aio_write(struct aiocb *);
aio_return(struct aiocb *);
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Buildroot demo.

QT rapid development demo.

LASER ICS using PREEMPT-RT
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ICS using Xenomai
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6 ICS using Xenomai
How does it work?
Internal latency measurements
Demo
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Adeos/I-Pipe

• I-Pipe take control over all hardware interrupts

• All system calls are passed through (I-Pipe)

• Events are dispatched to different I-pipe domains.
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$ cat /proc/ipipe/Xenomai
+----- Handling ([A]ccepted, [G]rabbed,
|+---- Sticky [W]ired, [D]iscarded)
||+--- Locked
|||+-- Exclusive
||||+- Virtual

[IRQ] |||||
38: W..X.

418: W...V
[Domain info]
id=0x58454e4f
priority=topmost

$ cat /proc/ipipe/Linux
0: A....
1: A....

...
priority=100
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Xenomai

There are actually two kernels. Process can migrate between them:

• Xenomai

• Linux

ICS using Xenomai How does it work? 80 / 89
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LASER ICS using Xenomai
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ICS using multiple processors (cores)
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7 ICS using multiple processors (cores)
Demo
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• Run MQX-Lite on Cortex-M0 to do the real-time stuff. Run Linux on more
powerfull processor.

• Vybrid: Linux runs on Cortex-A5, MQX on Cortex-M4
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Vybrid
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LASER ICS using Cortex-M0.

LASER ICS using Vybrid.

ICS using multiple processors (cores) Demo 88 / 89



Thank You!

http://bis-linux.com/dwf_waw2013

This presentation, source code and additional materials.

http://bis.org.pl

My books.

http://bis-linux.com/

Embedded Linux and Real-Time - training and support.

Contact

marcin@bis.org.pl

Questions?
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