! 5 p - o - ©
{ L, '3 j e W pag) =
5 » ¥ 1
. ﬂ g wnm B d
-“ ‘x k 5 BIS-LINUX
& D et ~ e
| i & !
1 .

{«-
DeS|gn|ng W|th Freescale

Embedded Linux for i.MX Applications Processors -
Real-World Projects

Marcin Bis

http://bis-linux.com
martin@bis-linux.com

Warsaw, Poland - June 26th 2013

EHITRE Al

. s
TYPREPLRRRNRRRTERERRRR

vvvvv

About me L

* Marcin Bis

> Embedded Linux (from
administration to programming:
system, kernel, device drivers)

w systemach
embeddéd

* Trainings, consulting, support
(http://bis-1linux.com)

* Industrial appliances (Linux +
Real-Time)

2/89

http://bis-linux.com

Goals L

2

2" freescale

semiconductor

To get familiar with Embedded Linux @ Freescale platforms.

To provide an in-depth uderstanding of Embedded Linux, and Real-Time
derivatives of Linux.

To enable You to put together a working Embedded Linux system with "rich
GUI" application.

To teach how an Open Source softare is developed and how to make
advantage of this process.

We will also build a working ICS (industrial control system) - a laser.

Agenda | L

1’ Why to consider Linux?

2 Let's build ICS

3 What we will need (hardware + tools)?
4 Real-Time

5 ICS using PREEMPT-RT

6 ICS using Xenomai

7 ICS using multiple processors (cores)

Inls-Lluux

Why to consider Linux?

Why to consider Linux? 5/89

Plan

1’ Why to consider Linux?

Pros ...
... and cons

Why to consider Linux? 6/89

Why to consider Linux?

Booming usage of Linux in embedded environments. From consumer
electronics to industrial control devices.

Hardware capable of running Linux become cheaper.
Linux supports lots of hardware, as well as communication protocols.
Security is easy to achieve.

Code is easy to develop and reusable.

Android - customized Linux system.

Why to consider Linux? Pros ... 7/89

Sourcecode and its licence (GPL)
NO additional feeS: no per-device licence cost, no need to

upgrade constantly.

BIS-LINUX

E.g. Availability of the source code, lets you easily upgrade old
system/product to the latest protocols and drivers.

Linux support all embedded SoC features. Device connectivity features are
implemented in universal frameworks.

SOC drivers

12C, SPI, GPIO

Flash (including flash-transaction-layers) and flash aware file systems (UBIFS,
JFFS2)

EEPROM
I/O expanders, custom embedded parts

networking controllers, including Wireless.

Why to consider Linux? Pros ... 8/89

Mixing GPL with proprietary

BIS-LINUX

You can add your proprietary applications, of course. ..

- a

—_ execute N ey H H
APPLICATION [« — APPLICATION : Tool-chai .
(proprietary) dynamic linking l (GPL) : O(()G-ICDL)am .
N—— . -
USERSPACE ""P: H

LIBRARY [Dr\ver as gptpzlicat\on] LIBC LIBRARY . E
(proprietary) (Fmpr'e ary) (LGPL) : BSP =
(SYSTEM CALLS) : (poard &

\ J - ' support =

P»| Glue code (GPL) * package) H

Device driver or mechanism LINUX Modifications needed to h ‘...h‘ E
as ‘Oad(i}?fpr‘eelgfL;nOdUIe run kernel on the hardware . additional |5

L (GPL)) : inteligence :
2 | (proprietary) |u

HARDWARE <> .

Why to consider Linux? Pros ... 9/89

Vast array of development tools. L

Do you want to build a customer-programmable device?
Let user program it in C, C++, Java, Python, Perl, PHP, Lua and even more.
Tool-chain can be provided at no additional cost (because it is open-source).

E.g. Python programmed "software PLC" device. Customer likes it to be Java
programmable - not a big issue in Linux.

Why to consider Linux? Pros ... 10/89

Network connectivity. Vast array of applications L

Stable, secure ang efficient neworking stack.

TCP/IP and variety of application-level protocols.

Easy encryption integration. WiFi, broadband, Bluetooth and other protocols.
VNC, Web Server, ftp, SSH...
Examples:

Consumer device, connected to local network is recognized by Windows and
Apple computers as a network neighbourhood party. In order to emulate
windows behaviour it runs a cut down SMB, NetBIOS, Upnp stack.

Device shall be easily accessible from smartphone (web browser), using secure
protocol as well as a VPN connection.

Secure (encrypted) firmware update over the network - no more STUXNET.

Why to consider Linux? Pros ... 11/89

Portability L

Design and write our software once. ..compile, run and deploy everywhere.
Application is Linux-base rather than microcontroller-based.
Can be developed and tested on a PC.
There is variety of available libraries and options.
Easy: GUI, input and display support.

You are no longer facing vendor lock-in!. Software can be easily ported to
another Linux SBC.

E.g. Demonstrate application running on RaspberryPI, as well as on some
more secure and manufacturing friendly platform.

If application specification needs Real-Time response. There are a few ways
to transform a Linux system into Real-Time operating system.

Why to consider Linux? Pros ... 12/89

Scalability L

Easily implement customers demand. Even one-time wishes.

Lower cost of developing one-time software variants:
Let’s use twice as big screen.
Or add barcode reader and rotary encoder.
We want to control device remotely via IP connection.
... but customer’s network is running IPv6.

OK, and now let’s display user interface in Russian/Chinese

Why to consider Linux? Pros ... 13/89

Caveats and disadvantages L

You:

Learning curve.

There is a great amount of knowledge to get familiar with. Variety of skills: from
electronics design to system administration is needed to make a "helicopter
view of a system".

Fragmented knowledge.

Linux is a go-fast technology rather than finished project. There is no central
knowledge base nor single vendor providing support (actually there are many of
them). Relevant support can be difficult to find on the Internet or applicable only
to specific version of source code.

Why to consider Linux? ... and cons 14/89

Learning curve

BIS-LINUX

Simple project: bare-processor or RTOS applications are easy to establish -
just install BSP and get familiar with documentation.

complete
a
project

b i complicated systems
h multiple interface options
N 1 wireless network connectivity

Linux SBC

traditional pC

small systems
simple interface

»

»
project
complexity

Linux project: knowledge of the whole software stack is needed. But,
afterwards, adding sophisticated features is very easy.

Why to consider Linux? ... and cons 15/89

Caveats and disadvantages L

Your Product:

Memory footprint.

Power and space limitations. Microcontroller systems used for many tasks has
(e.g.) 16kB of RAM and 128kB of Flash in single chip. Typical universal Linux
SBC with network connectivity and full user interface has 64MB of RAM and
256MB of Flash. Even small Linux system needs 32MB RAM/8MB Flash.

Development Tools.

Most Linux system development and debugging can be done using Eclipse,
although there is no install and ready solution (like tools for various
microcontrollers). IDE has to be properly configured by a user.

Why to consider Linux? ... and cons 16/89

Inls- uuuuu

- So: is Linux the answer for You?

- No! Linux is a question to consider.

Definitively worth considering.

... and cons 17/89

Let’s build ICS

Let’s build ICS

1S build ICSe W A
- Weight dosing

1 - analysis
se 2 - Laser
Case 2 - analysis

=

Let’s build ICS

Weight-dosing process - specification L

Loose material (or fluid)
is loaded into containers.

Let’s build ICS

the main tank is suspended on weight (tensometer)

conveyor or robot provides containers, appearance
of the container triggers interrupt

the valve opens, and the material is poured into a
container

amount of material is measured by reading data
from the weight

main tank has a limited capacity, it can be
replenished from main silo by turning on vacuum

if vacuum is turned on, it has to work for some
minimum time, while vacuum is working, material
cannot be poured.

Case 1 - Weight dosing 20/89

Weight-dosing process - analysis

Weight dosing process can be modelled as a finite state machine.

[STOPPING STOPPED MANUAL CONTROL
process process manual ccntrou
about to stop stopped

DOSING_STOP
valve cioses
(t0+ settle_time + 53ms + X)

WAIT_FOR_TRIGGER
wait for container to be
loaded

WEIGHT_DOSING TRIGGERED
material is pouring, weight is controlled contair;eor comes
t0)

(t0 + settle_time + 53ms)

DOSING_START
valve Gpens
(t0 + settle_time +52ms)

(t0 + settle_time)

[VACUUM_STOPPING]
if vacuum is ranning, wait for it

BALANCE_LEVELING
base weight of main tank
(t0 + settle_time + 1ms)

Process starts on WAIT_ON_TRIGGER state. If triggered, it runs on timer

(1ms).

Let’s build ICS Case 1 - analysis

BIS-LINUX

21/89

Weight-dosing process - implementation goals L

Hardware
PC for development, Ubuntu 12.04
Freescale Board

GUI part
written in QT/C++

userspace components provided by: Buildroot or LTIB or YOCTO or something
else...

ext4 on SD card as primary storage or NAND flash storage
Real-Time operations

implemented as separate process in C

which allows easy porting

communicates with GUI using shared memory and message queue, in a
lockless way:

two control structures are stored in SHM

one is utilized by running process, other can be changed by GUI

then structs are switched

Let’s build ICS Case 1 - analysis 22/89

START

INITIALIZATION

- memory allocation and locking
- load resources
- set scheduling parameters
- execute worker

M

——

GUI
- show current
state ¢ - -
- respond to
user actions

IPC
shared

memory,
message
queue ...

.
P L) AL

emmmman

WORKER

I

do_fsm_step:
- responds to input
- do calculations

send messagess
sets the timer and
go to sleep

System boot constraint: must be operational under 10s (2.5s RT task, 8-9s GUI).

Let’s build ICS

Case 1 - analysis

I real-time

waits for an event: . scheduling
IRQ, timer or i\ class and
some message * priority

|

BIS-LINUX

23/89

UML

BIS-LINUX

controller_t
 goprehowymani Fonyprocess i
Cresc atrybutom i Kosy Jot preechowswans w pamieci [&—] ¥ ovs
m.,»mr.me, precde wisy st sy w “mennyen
cych do komunkach £ vwalt_for trigger()
State: int Oceei ns preytycie koeinega poernika do
kcsainy sta procesu. eeni

t
g3 Komunikaci 2 ofoczeniem: odczytywonia
ktuainych stanow czujnksw | ni wesciaimyisca

[rvatve_close()
open()
) otwarce zaworu spustawege.

terminate: int
[Kontotuje zatczymanie procesu pod koniec cyks

int
ktuaina wartose odezytana = wasl (4o prezenstacil w rensine_stop()

[rengine start ()
aceone iacsaie caurzacza
[Kontrotuj stan odkurzacza

[rengine state(): int
e: nt o i e
Vartose zadana do odwasensa. [rpatan)+ ant

(et sy s oo
[rbatance _read_filtereg(int): int
reg: int (usreciony odceyt wagi - itsuje zatucenia, aie
Vartose requistors. [wprowadz péznienia

real_dose: int
Vartos ochuszons w rzeceywstose

Te_tine: int
|2atany ceas oczekimania na wytaceenie odkurzacea.
connand:
[Komenda w trybie manuainym (moze byé pobrana, a
Inasteprie potwiardzons po je wykonaniv)
11_counter: long

counter: long
lsckaa cykicana
shn_fd: int
shn_content: sha_content_t *
curn: volatile control_pun t *
s volachls cantrol ¢

O

Ly
ratan ooy w iy oy trrciaconts

) e Automat
tineout; struct timsspec skoiczony.

-«
o

Istruktura uzywana do programowania tmera.

et state(int]

+getstate()

+set_terninate(int)

msg_t
oet terminate() Wysylanie komunikatsw 3o GUI

g md ¢
Lgetbatance veioht() [oreka kormunikatom.

ot (int
[+get_engine state() -
[-get lograniczons).

w komunikata jest

o0
getsettle_t
loperatie na stane procesu

get_conrand () State t
saciCcomand() Zapis oyt san proces o i et
[amey w iybie manuainym. Tood)

gin() ouce sy s it spanywnysoscns
comit(
(Operace a iokadiecyklcane save()
 eheck and settcn) o it s ocessdo i poscns
P reicsie Gy pocess Bt ersntor

Let’s build ICS Case 1 - analysis

24/89

Laser - spec L

PWM controlled laser diode (actually real lasers power circuits are far more
complicated)

period: 200us
laser must send a given set of pulses

laser operation is trigerred by user pressing button

Actual model implemented with laser pointer.
Pressing button trigers PWM for exacly 900ms
Button both: virtual and physical

Let’s build ICS Case 2 - Laser 25/89

Laser

BIS-LINUX

STOPPED
process
stopped

WAIT_FOR_TRIGGER
wait for switch
pressed

PWM_OFF

stop generating
pulses

PWM_ON
pulses are being
generated

Let’s build ICS Case 2 - analysis 26/89

Laser

MainWindow

+pumSpinValueChanged(int)
+messageHit(QString)
+pumChanged(int)
+labelSetMsg(QString)

TLaserShm
Process settings
transmission.

controller_t

“shm_fd: int
-shm_content: shm_content_t *

+ustawCzasImpulsu(int)

APPLICATION
MAIN
WINDOW

Let’s build ICS

TLaserMsg

shared
memory

Receives process settings.

“get_pim_work():_int

BIS-LINUX

io_
Interracts with I/O

+wait_for_foot_switch()
+pwm_set(int)

Process messagess receive.
“mq:_mad_t
+messgaeReceived(QString)

message
queue

msg_t
Transmits process messagess.

+put()

Message queue is
operated by another
thread

Case 2 - analysis

STOPPED

27/89

Inls-Lluux

What we will need (hardware + tools)?

What we will need (hardware + tools)? 28/89

Plan

BIS-LINUX

3 What we will need (hardware + tools)?
Options
MQX Lite
Linux
Linux + MQX

What we will need (hardware + tools)? 29/89

Using Linux... L

Weight dosing - pneumatics are used (actuator latency is 15ms).

main() 4—»[:]9 worker()

Threads - share virtual memory, have different scheduling settings.

Welding machine - us
Medical laser controller - us (or even less)

main() I worker()
(Linux task) (Xenomai task)

Xenomai provides better latency and predictability.

main() fast serial worker()
(Linux task) connection ~ |(dedicated uC)

Special hardware can be utilized too:
- two processors: eg. additional Cortex-M for running worker task
- multicore systems: eg. Freescale Vybrid (Cortex-A5 + Cortex-M4)

What we will need (hardware + tools)? Options 30/89

Why not?

BIS-LINUX

t we will need (hardware + tools)? MQX Lite 31/89

i.MX53

BIS-LINUX

Sindans

at we will need (hardware + tools)?

Linux 32/89

i.MX6 Quad

BIS-LINUX

I BIS-LINUX

Vybri

Linux

[
fleid

34/89

Linux + MQX

t we will need (hardware + tools)?

Inls-Lluux

Real-Time

Plan

BIS-LINUX

4 Real-Time
Theory
Latency tests
Testing circuit
Unmodified Linux kernel
Real-Time - concepts
Real-Time - measurements
Not so good results ...
Where is latency coming from?
How to achieve Real-Time in Linux?

What Real-Time really means? L

Popular definition

Correctness of operation depends not
only on whether performed without error,
but also on the time (the upper limit) in
which the operation completed.

37/89

And in practice L

R | system IS one In which can be proveo

that any required operation will be
completed in a certain time.

Mathematical proof would be perfect. Unfortunately systems are so complex, it
is not possible.

System is tested (TDD). If deadlines are met (under load) for all use-cases,
system is Real-Time.

Note: In some cases (eg. certification for safety-critical tasks), full-code
coverage would be needed!

Real-Time vs. Real-Fast

Linux kernel is designed to be ,democratic”

resources are equally disposed
eg.: scheduler avoids process starvation

Usually, determinism is not taken into account

throughput is.

(

)

(applications) libraries
USERSPACE
\ J
system calls]

e)
\, S
HARDWARE
Theory

BIS-LINUX

39/89

Real-Time vs. Real-Fast ...

BIS-LINUX
kernel virtual memo
(the same for every process)
0x0 PROCESS 1 - virtual address space (cat /proc/<PID>/smaps) 0xC0000000 OXFFFFFFFF
page program library
4B code | code i I
0x0 PROCESS 2 0XC0000000 OXFFFFFFFF
page program library
4B code | code data
(MMU)
0x0 Physical address space y y OXFFFFFFFF
@ 3 3 CUNS ICTRN ITTRN EECURN BTN BECTR BTN EETTRS T T
program | worary [program progam cache,
Flash | Flash | Flash e ods data buffers,
ot | reans | reas ready .
execute | execute | wrne e
Theory 40/89

What are we testing? L

INPUT OUTPUT

~r —>

Reference circuit

BIS-LINUX

GENERATOR pC OSCILLOSCOPE
(square signal
from oscilloscope GPIO 1 Ch1l

or

NE555 based circuit) ’— GPIO 2 Ch2

Input is triggered on falling and rising edge, output state changes according to
input.

In this case, we are using GPIO pin-s.
Input can be other external or internal: timer,
camera, network PHY, ADC etc.

JITTTrrrrnng FEilivvvay

BIS-LINUX

Driver design

BIS-LINUX

0l _inout.c

interrupt handler

. >
IRQ v exit t
t0 respond to
signal
02_uinout.c
bottom half
is issued
interrupt handler N deferred action
(upper half) (bottom half)
>
IRQ v t
t0 the time, response to signal
system can do other

things

Code is on GitHub:
https://github.com/marcinbis/mb-rt-data.git
Unmodified Linux kernel 44/89

https://github.com/marcinbis/mb-rt-data.git

BIS-LINUX

s W Trig'd MPos: 1.010ms MEASURE

CH 100V CH2 7 132V
595.432Hz

Unmodified Linux kernel 45/89

Results L

Tek T Trig'd B Pos: 198.0us CURSOR
+
Twpe

Source
CHA

M G005
17-Sep—12 2234

Telk - Trig'd P Pos: 00,0 us DISPLAY
.+ -I-I:IIIFIE BIS-LINUX
! LOrs)
Persist
Farrnat
ITIT
1 ?
ERTIT
: E-Jul-12 17:50
latency E E
E¢ jitter H ? t
. ' l _
worst case deadline >
input reaction
signal time

Concepts L

Deadline

Point in time, before which the action (system response) must occur.

Hard Real-Time - deadline must be meet (fatal error if not).

Firm Real-Time - deadline should be meet (system response is useless
otherwise).

Soft Real-Time - deadline should be meet, but nothing critical will happen if not
(eg. decreased user experience, sample drop ...).

Latency

The time between the moment in which the action was to occur, and in which,
in fact, occurred.

Concepts L

Jitter

Undesired deviation of latency. For various reasons, latency is not constant.
Too large jitter, renders system unusable for data acquisition.

Predictability

How much time, the action will take (eg. from IRQ occurred to handler finished
executing).
O(1) algorithms should be used.

Worst Case

Due to imperfect nature of real-world systems, we are considering the Worst
Case.

We have to know the latency in worst possible case.

Let's add some load L

$ cat /proc/loadavg
5.02 3.76 2.04 2/47 432

I/0 on SD card:

cat /dev/mmcblkOpl > /dev/null
sending ASCII data to serial console:
cat /dev/zero | od -v

send network packages:

ping -f <ip address>

WARNING!: these tests just generate IRQ, they are not showing real-life load.
Use real-case tests.

Results under load L

Tek T Trig'd B Pas: 400,0 us CURSOR
-
Twpe

Source
CHA

M 100 us
17-Sep=12 2240

Inls-Lluux

Linux:
Separates:

logic (in userspace)

mechanisms (provided by kernel)

Interrupt-based I/0

process

process

/dev/sth

— - registered on module loading

- unregistered on module unloading

&

userspace
kernelspace

| file_operations {
.open

.release

| .read

)

read() waits for request
on waitqueue

returns data and wakes
process

(optional)
bottom half
deferred data handling

< triggers processes on

waitqueue

| IRQ registered on module
loading (request_irq()) and
| associated with handler

| IRQ freed on module unloading

cess context
errupt contex

irgreturn_t (*handler)

IRQ handler

receives data from device
schedules bottom halve

IRQ line on cur-
rent CPU is locked

Real-Time - measurements

BIS-LINUX

device

53/89

Interrupt-based I/O - another view

L proces ...

... proces J

BIS-LINUX

read() on device file
return
ssize_t
syscall syscall -
goes to waitqueue
sleep on interrupt | wake-up
waitqueue handling
. >
RQ v t
signal
the time, system response
can do other tasks
03_cinout.c
04_real_cinout.c
In case of GPIO: /sys/class/gpio/ can be used as well (poll (),
read(),write()).

54/89

Userspace - results under load L

"Eit Hap |
19.20m=
52.08H=
10.48m=
—8.720m=
.‘ | I | | | | | | I | ‘ 1| 1

Stop

m

B 500

Userspace - results under load L

"Eit Hap |
19.20m=

52.08H=

10.48m=

—8.720m=

Hi—

Stop

B 500

Where is latency coming from?

(SorD)

task waits for syscall completion

task running
(R)

interrupt handler
execution delay

task ready
tu run (R)
I task marked I
as ready to
execute
IRQ
handler scheduler
interrupt handler scheduler scheduler
I execution time I execution delay I execution

IRQ

overall latency

Where is latency coming from?

BIS-LINUX

57 /89

How to achieve Real-Time in Linux?

BIS-LINUX

1 Micro-kernel approach:
Real-Time .
RTLinux - [tasks [Linux]

http://en.wikipedia.org/wiki/RTLinux,

there used to be open-source version: i i
http://www.rtlinuxfree.com/. HKernel
Adeos/I-Pipe - i
http://home.gna.org/adeos/ - common
base.

RTAI - https://www.rtai.org/ - minimum
possible latency.

Xenomai - http://www.xenomai.org/ -
provides various APIs.

Hardware

2 In-kernel approach:

RT PREEMPT -
https://rt.wiki.kernel.org
http://www.kernel.org/pub/linux/
kernel/projects/rt/

How to achieve Real-Time in Linux? 58/89

http://en.wikipedia.org/wiki/RTLinux
http://www.rtlinuxfree.com/
http://home.gna.org/adeos/
https://www.rtai.org/
http://www.xenomai.org/
https://rt.wiki.kernel.org
http://www.kernel.org/pub/linux/kernel/projects/rt/
http://www.kernel.org/pub/linux/kernel/projects/rt/

...or use hardware solutions

BIS-LINUX

1 Dual processor/microcontroller approach 4
Dual/Quad Core 1i.MX6 -devote one core to \ "j

Real-Time task. T
Additional uC -add (cheap) microcontroller and =
run RTOS on it (ore bare-metal app). '

2 Heterogenous cores:

Freescale Vybrid

How to achieve Real-Time in Linux? 59 /89

|ICS using PREEMPT-RT

ICS using PREEMPT-RT 60 /89

Plan L

5 ICS using PREEMPT-RT
PREEMPT-RT
Implementation
Internal latency measurements
Demo

ICS using PREEMPT-RT 61/89

1| Standard kernel
BIS-LINUX
TASK 1 (high priotiry)

interrupt handler

Tt
IRQ
2| Interrupts as threads
Kernel Features --—->
Preemption Mode (Complete Preemption ()) ———>

(X) Complete Preemption (Real-Time)

-x— Thread Softirgs /+ 2.6.33 %/
—x— Thread Hardirgs

TASK 1 (high priority)

interrupt handler
.
»

l t

IRQ

04 under load L

- Aot |

100.0us
10.00kH=
—a28.0us
=425 0us

o0y 5000s

B SO0

04 under load L

Aot

450.0u=
2.222kH=
22.00u=
=425 0us

RLLEL

B SO0

Real-Time != Real Fast

Maximum latency (Worst Case) is limited, but minimum latency is bigger.
Kernel with RT-PREEMPT patch, does not make the whole system Real-Time

Specially designed application and POSIX RT-API should be used:

Defined: IEEE 1003. 1b. Linux supports it.
Scheduler

Memory locking

Shared memory

RT signals

Semaphores (priority inheritance)

Timers (esp. CLOCK_MONOTONIC)

AlO

Tips&Tricks

BIS-LINUX

Use appropriate programming language

C - but make it object-oriented (for reference - Linux kernel: buses, drivers,
classes etc.)

C++ - would be nice too

cannot be utilized inside kernel or as Xenomai kernel process
can be executed as bare-metal uC or in userspace

Utilize design patterns.

ICS using PREEMPT-RT Implementation 66 /89

Tips&Tricks

BIS-LINUX

Set the proper scheduler class and priority

struct sched_param sp;
sp.sched_priority = MY_PRIORITY;

ret = sched_setscheduler (0, SCHED_FIFO, &sp);

Interrupts run in threads, default to: SHCED_FIF0/50.
...do not forget to fine-tune them.

SCHED_DEADLINE can be helpful too.

ICS using PREEMPT-RT Implementation

67/89

BIS-LINUX

Lock all memory (mlock)

mlockall (MCL_CURRENT |[MCL_FUTURE) ;

Try to cause page_fault (allocated memory, data from files)

buf = malloc (BUF_SIZE) ;
memset (buf, 0, BUF_SIZE);

Memory is locked, so it stays on place.

ICS using PREEMPT-RT Implementation 68 /89

BIS-LINUX

Prefault the stack (it can be shared within process we have forked from)

/* GCC will not inline this function =/
__attribute_ ((noinline)) void stack_prefault (void)

—_~

unsigned char tab[MAX_SAFE_STACK];
/* GCC will omit optimizations =/
asm("");
memset (tab, 0, MAX_SAFE_STACK) ;

}

[x/

stack_prefault () ;

ICS using PREEMPT-RT Implementation 69 /89

Use POSIX timer to do the fsm step (in a proper way)

#define NSEC_IN_SEC 10000000001
#define INTERVAL 10000001
struct timespec timeout;

clock_gettime (CLOCK_MONOTONIC, &timeout) ;
while (1) {
do_fsm_step (&some_data) ;
timeout.tv_nsec += INTERVAL;
if (timeout.tv_nsec >= NSEC_IN_SEC) {
timeout.tv_nsec —-= NSEC_IN_SEC;
timeout.tv_sec++;
}
clock_nanosleep (CLOCK_MONOTONIC, TIMER_ABSTIME,
&timeout, NULL);

ICS using PREEMPT-RT Implementation 70/89

BIS-LINUX

[feml m 1 | preea— | feml
| ims lfs_m| ims lfs_m| 1ms lfs_m| 1ims lfs_m| .

clock_nanosleep(CLOCK_MONOTONIC, 0, &interval, NULL);

[tsm} { fsm | | fsm fsm
| 1ms — ims | I 1ims | 1ms fsm) 1ms

clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &timeout, NULL);

ICS using PREEMPT-RT Implementation 71/89

BIS-LINUX

Utilize AIO to write or read data (eg. sensor data, production logs)

struct aiocb {

int aio_fildes //File descriptor.
volatile void *aio_buf //Location of buffer.
/x oo x/

bi
aio_write (struct aiocb x);
aio_return (struct aiocb =*);

ICS using PREEMPT-RT Implementation 72/89

aio_completion_handler() cur_block

aio_write()
aio_write()
T T aio_write()

BIS-LINUX

cblist

free_list

buff

struct aiocb

1 - busy, 0 - free
RT TASK produces Y

data

ta,data,data,data,data,data

A

ICS using PREEMPT-RT

Implementation

73/89

BIS-LINUX

Freescale i.MX53 3.4.25-rt36 PREEMPT RT
Opédznienia: 14us min, 32us avg, 111us max, 0 prébek poza wykresem.

le+08 f T T T
le+07 |

CPU1

le+06 |
100000 -
10000 F

1000 F

llo$¢ prébek

100 [
10 F
1F

01t i i i
0 50 100 150 200

Opédznienie (us)

ICS using PREEMPT-RT Internal latency measurements 74 /89

F\)’ ‘
—

“Buildroot demo.

rapid development demo.

A

“EASER ICS using PREEMPT-RT \‘

- /&
5 .‘ . S“"_ﬂ ‘ 75;8;

ICS using PHEEMPT—RT Demo

ICS using Xenomai

ICS using Xenomai 76 /89

Plan

BIS-LINUX

6 ICS using Xenomai
How does it work?
Internal latency measurements
Demo

ICS using Xenomai 77/89

Adeos/I-Pipe

Hardware
interrupt
controller

BIS-LINUX

—>
......’

Xenomai Linux
domain domain
{ I-log) { I-log) CPUO
—/ —/
I-pipe
‘, I-log ‘, ‘, I-log ‘, CPU1
CﬁUn

interrupts being masked

I-Pipe take control over all hardware interrupts

(real)

All system calls are passed through (I-Pipe)

interrupts being masked
(virtual)

Events are dispatched to different I-pipe domains.

ICS using Xenomai

How does it work?

78 /89

BIS-LINUX

$ cat /proc/ipipe/Xenomai

+————- Handling ([A]ccepted, [G]rabbed,
|+-——— Sticky [W]ired, [D]iscarded)
| | +———- Locked

| | | +=— Exclusive

[1]1+=- Virtual
[IRQ] [
38: W.
418: W...V
[Domain lnfoj
1d=0x58454e4f

priority=topmost

\
X,

$ cat /proc/ipipe/Linux
0: A....
1: A....

priority=100

ICS using Xenomai How does it work? 79/89

Xenomai

BIS-LINUX

(standard Linux task \ (RT task \
L GNU/libc) [GNustibc [Xenomai skin)
4 D
Linux subsystems os
(VFS) (network) Xenomai
RTOS
() () (nucleus)
vmm
(I-pipe)

. J

There are actually two kernels. Process can migrate between them:

Xenomai

Linux

ICS using Xenomai How does it work? 80/89

BIS-LINUX

Freescale i.MX53 3.0.36 Xenomai
Opédznienia: Yus min, us avg, Us max, prébek poza wykresem.

le+07 ¢ T T T

CPU1

1e+06 |
100000 |
10000 |

1000

llo$¢ prébek

100
10

1

100 150
Opédznienie (us)

0.11

N
o
o

ICS using Xenomai Internal latency measurements 81/89

Inls- uuuuu

ICS using multiple processors (cores)

ICS using multiple processors (cores) 83/89

Plan

BIS-LINUX

7 ICS using multiple processors (cores)
Demo

ICS using multiple processors (cores) 84/89

Inls-Lluux

Run MQX-Lite on Cortex-MO0 to do the real-time stuff. Run Linux on more
powerfull processor.

Vybrid: Linux runs on Cortex-A5, MQX on Cortex-M4

ICS using multiple processors (cores) 85/89

Vybrid

BIS-LINUX

-0 Ll
-y

ICS using multiple processors (cores) 86/89

ICS using multiple processors (cores 87/89

ER ICS using Cortex-MO.

SER ICS using Vybrid.

Thank You! L

http://bis-linux.com/dwf waw2013

This presentation, source code and additional materials.

http://bis.org.pl
My books.

http://bis-1linux.com/

Embedded Linux and Real-Time - training and support.

Contact

marcin@bis.org.pl

Questions?

ICS using multiple processors (cores) Thank You! 89/89

http://bis-linux.com/dwf_waw2013
http://bis.org.pl
http://bis-linux.com/

	Why to consider Linux?
	Pros ...
	... and cons

	Let's build ICS
	Case 1 - Weight dosing
	Case 1 - analysis
	Case 2 - Laser
	Case 2 - analysis

	What we will need (hardware + tools)?
	Options
	MQX Lite
	Linux
	Linux + MQX

	Real-Time
	Theory
	Latency tests
	Testing circuit
	Unmodified Linux kernel
	Real-Time - concepts
	Real-Time - measurements
	Not so good results ...
	Where is latency coming from?
	How to achieve Real-Time in Linux?

	ICS using PREEMPT-RT
	PREEMPT-RT
	Implementation
	Internal latency measurements
	Demo

	ICS using Xenomai
	How does it work?
	Internal latency measurements
	Demo

	ICS using multiple processors (cores)
	Demo

