
Designing with Freescale
-

Embedded Linux for i.MX Applications Processors -
Real-World Projects

Marcin Bis

http://bis-linux.com
martin@bis-linux.com

Warsaw, Poland - June 26th 2013

1 / 89

About me

• Marcin Bis

• Embedded Linux (from
administration to programming:
system, kernel, device drivers)

• Trainings, consulting, support
(http://bis-linux.com)

• Industrial appliances (Linux +
Real-Time)

2 / 89

http://bis-linux.com

Goals

• To get familiar with Embedded Linux @ Freescale platforms.

• To provide an in-depth uderstanding of Embedded Linux, and Real-Time
derivatives of Linux.

• To enable You to put together a working Embedded Linux system with "rich
GUI" application.

• To teach how an Open Source softare is developed and how to make
advantage of this process.

We will also build a working ICS (industrial control system) - a laser.

3 / 89

Agenda I

1 Why to consider Linux?

2 Let’s build ICS

3 What we will need (hardware + tools)?

4 Real-Time

5 ICS using PREEMPT-RT

6 ICS using Xenomai

7 ICS using multiple processors (cores)

Agenda 4 / 89

Why to consider Linux?

Why to consider Linux? 5 / 89

Plan

1 Why to consider Linux?
Pros ...
... and cons

Why to consider Linux? 6 / 89

Why to consider Linux?

Booming usage of Linux in embedded environments. From consumer
electronics to industrial control devices.

• Hardware capable of running Linux become cheaper.

• Linux supports lots of hardware, as well as communication protocols.

• Security is easy to achieve.

• Code is easy to develop and reusable.

• Android - customized Linux system.
Why to consider Linux? Pros ... 7 / 89

Sourcecode and its licence (GPL)

No additional fees: no per-device licence cost, no need to
upgrade constantly.

E.g. Availability of the source code, lets you easily upgrade old
system/product to the latest protocols and drivers.

Linux support all embedded SoC features. Device connectivity features are
implemented in universal frameworks.

• SOC drivers

• I2C, SPI, GPIO

• Flash (including flash-transaction-layers) and flash aware file systems (UBIFS,
JFFS2)

• EEPROM

• I/O expanders, custom embedded parts

• networking controllers, including Wireless.

Why to consider Linux? Pros ... 8 / 89

Mixing GPL with proprietary

You can add your proprietary applications, of course. . .

Why to consider Linux? Pros ... 9 / 89

Vast array of development tools.

Do you want to build a customer-programmable device?

Let user program it in C, C++, Java, Python, Perl, PHP, Lua and even more.

Tool-chain can be provided at no additional cost (because it is open-source).

E.g. Python programmed "software PLC" device. Customer likes it to be Java
programmable - not a big issue in Linux.

Why to consider Linux? Pros ... 10 / 89

Network connectivity. Vast array of applications

Stable, secure and efficient networking stack.

TCP/IP and variety of application-level protocols.

Easy encryption integration. WiFi, broadband, Bluetooth and other protocols.
VNC, Web Server, ftp, SSH...

Examples:

• Consumer device, connected to local network is recognized by Windows and
Apple computers as a network neighbourhood party. In order to emulate
windows behaviour it runs a cut down SMB, NetBIOS, Upnp stack.

• Device shall be easily accessible from smartphone (web browser), using secure
protocol as well as a VPN connection.

• Secure (encrypted) firmware update over the network - no more STUXNET.

Why to consider Linux? Pros ... 11 / 89

Portability

Design and write our software once. . . compile, run and deploy everywhere.

• Application is Linux-base rather than microcontroller-based.

• Can be developed and tested on a PC.

• There is variety of available libraries and options.

• Easy: GUI, input and display support.

You are no longer facing vendor lock-in!. Software can be easily ported to
another Linux SBC.

E.g. Demonstrate application running on RaspberryPI, as well as on some
more secure and manufacturing friendly platform.

If application specification needs Real-Time response. There are a few ways
to transform a Linux system into Real-Time operating system.

Why to consider Linux? Pros ... 12 / 89

Scalability

Easily implement customers demand. Even one-time wishes.

Lower cost of developing one-time software variants:

• Let’s use twice as big screen.

• Or add barcode reader and rotary encoder.

• We want to control device remotely via IP connection.

• . . . but customer’s network is running IPv6.

• OK, and now let’s display user interface in Russian/Chinese

Why to consider Linux? Pros ... 13 / 89

Caveats and disadvantages

You:

• Learning curve.
There is a great amount of knowledge to get familiar with. Variety of skills: from
electronics design to system administration is needed to make a "helicopter
view of a system".

• Fragmented knowledge.
Linux is a go-fast technology rather than finished project. There is no central
knowledge base nor single vendor providing support (actually there are many of
them). Relevant support can be difficult to find on the Internet or applicable only
to specific version of source code.

Why to consider Linux? ... and cons 14 / 89

Learning curve

Simple project: bare-processor or RTOS applications are easy to establish -
just install BSP and get familiar with documentation.

Linux project: knowledge of the whole software stack is needed. But,
afterwards, adding sophisticated features is very easy.

Why to consider Linux? ... and cons 15 / 89

Caveats and disadvantages

Your Product:

• Memory footprint.
Power and space limitations. Microcontroller systems used for many tasks has
(e.g.) 16kB of RAM and 128kB of Flash in single chip. Typical universal Linux
SBC with network connectivity and full user interface has 64MB of RAM and
256MB of Flash. Even small Linux system needs 32MB RAM/8MB Flash.

• Development Tools.
Most Linux system development and debugging can be done using Eclipse,
although there is no install and ready solution (like tools for various
microcontrollers). IDE has to be properly configured by a user.

Why to consider Linux? ... and cons 16 / 89

- So: is Linux the answer for You?

- No! Linux is a question to consider.

Definitively worth considering.

Why to consider Linux? ... and cons 17 / 89

Let’s build ICS

Let’s build ICS 18 / 89

Plan

2 Let’s build ICS
Case 1 - Weight dosing
Case 1 - analysis
Case 2 - Laser
Case 2 - analysis

Let’s build ICS 19 / 89

Weight-dosing process - specification

Loose material (or fluid)
is loaded into containers.

• the main tank is suspended on weight (tensometer)

• conveyor or robot provides containers, appearance
of the container triggers interrupt

• the valve opens, and the material is poured into a
container

• amount of material is measured by reading data
from the weight

• main tank has a limited capacity, it can be
replenished from main silo by turning on vacuum

• if vacuum is turned on, it has to work for some
minimum time, while vacuum is working, material
cannot be poured.

Let’s build ICS Case 1 - Weight dosing 20 / 89

Weight-dosing process - analysis

Weight dosing process can be modelled as a finite state machine.

Process starts on WAIT_ON_TRIGGER state. If triggered, it runs on timer
(1ms).

Let’s build ICS Case 1 - analysis 21 / 89

Weight-dosing process - implementation goals

Hardware

• PC for development, Ubuntu 12.04

• Freescale Board

GUI part

• written in QT/C++

• userspace components provided by: Buildroot or LTIB or YOCTO or something
else...

• ext4 on SD card as primary storage or NAND flash storage

Real-Time operations

• implemented as separate process in C

• which allows easy porting

• communicates with GUI using shared memory and message queue, in a
lockless way:

• two control structures are stored in SHM
• one is utilized by running process, other can be changed by GUI
• then structs are switched

Let’s build ICS Case 1 - analysis 22 / 89

System boot constraint: must be operational under 10s (2.5s RT task, 8-9s GUI).
Let’s build ICS Case 1 - analysis 23 / 89

UML

Let’s build ICS Case 1 - analysis 24 / 89

Laser - spec

• PWM controlled laser diode (actually real lasers power circuits are far more
complicated)

• period: 200µs

• laser must send a given set of pulses

• laser operation is trigerred by user pressing button

Actual model implemented with laser pointer.

• Pressing button trigers PWM for exacly 900ms

• Button both: virtual and physical

Let’s build ICS Case 2 - Laser 25 / 89

Laser

Let’s build ICS Case 2 - analysis 26 / 89

Laser

Let’s build ICS Case 2 - analysis 27 / 89

What we will need (hardware + tools)?

What we will need (hardware + tools)? 28 / 89

Plan

3 What we will need (hardware + tools)?
Options
MQX Lite
Linux
Linux + MQX

What we will need (hardware + tools)? 29 / 89

Using Linux...

Weight dosing - pneumatics are used (actuator latency is 15ms).

Threads - share virtual memory, have different scheduling settings.

Welding machine - µs
Medical laser controller - µs (or even less)

Xenomai provides better latency and predictability.

Special hardware can be utilized too:
- two processors: eg. additional Cortex-M for running worker task
- multicore systems: eg. Freescale Vybrid (Cortex-A5 + Cortex-M4)
What we will need (hardware + tools)? Options 30 / 89

Why not?

What we will need (hardware + tools)? MQX Lite 31 / 89

i.MX53

What we will need (hardware + tools)? Linux 32 / 89

i.MX6 Quad

What we will need (hardware + tools)? Linux 33 / 89

Vybrid

What we will need (hardware + tools)? Linux + MQX 34 / 89

Real-Time

Real-Time 35 / 89

Plan

4 Real-Time
Theory
Latency tests
Testing circuit
Unmodified Linux kernel
Real-Time - concepts
Real-Time - measurements
Not so good results ...
Where is latency coming from?
How to achieve Real-Time in Linux?

Real-Time 36 / 89

What Real-Time really means?

Popular definition

Correctness of operation depends not
only on whether performed without error,
but also on the time (the upper limit) in
which the operation completed.

Real-Time Theory 37 / 89

And in practice

Practical definition

RT system is one in which can be proved
that any required operation will be
completed in a certain time.

• Mathematical proof would be perfect. Unfortunately systems are so complex, it
is not possible.

• System is tested (TDD). If deadlines are met (under load) for all use-cases,
system is Real-Time.
Note: In some cases (eg. certification for safety-critical tasks), full-code
coverage would be needed!

Real-Time Theory 38 / 89

Real-Time vs. Real-Fast

• Linux kernel is designed to be „democratic”

• resources are equally disposed
• eg.: scheduler avoids process starvation

• Usually, determinism is not taken into account

• throughput is.

Real-Time Theory 39 / 89

Real-Time vs. Real-Fast ...

Most layers and subsystems are complex:

Real-Time Theory 40 / 89

What are we testing?

Real-Time Latency tests 41 / 89

Reference circuit

Input is triggered on falling and rising edge, output state changes according to
input.

In this case, we are using GPIO pin-s.
Input can be other external or internal: timer,
camera, network PHY, ADC etc.

Real-Time Testing circuit 42 / 89

Real-Time Testing circuit 43 / 89

Driver design

01_inout.c

02_uinout.c

Code is on GitHub:
https://github.com/marcinbis/mb-rt-data.git

Real-Time Unmodified Linux kernel 44 / 89

https://github.com/marcinbis/mb-rt-data.git

Real-Time Unmodified Linux kernel 45 / 89

Results

Real-Time Unmodified Linux kernel 46 / 89

Real-Time Real-Time - concepts 47 / 89

Concepts

Deadline

Point in time, before which the action (system response) must occur.

• Hard Real-Time - deadline must be meet (fatal error if not).

• Firm Real-Time - deadline should be meet (system response is useless
otherwise).

• Soft Real-Time - deadline should be meet, but nothing critical will happen if not
(eg. decreased user experience, sample drop ...).

Latency

The time between the moment in which the action was to occur, and in which,
in fact, occurred.

Real-Time Real-Time - concepts 48 / 89

Concepts

Jitter

Undesired deviation of latency. For various reasons, latency is not constant.
Too large jitter, renders system unusable for data acquisition.

Predictability

How much time, the action will take (eg. from IRQ occurred to handler finished
executing).
O(1) algorithms should be used.

Worst Case

Due to imperfect nature of real-world systems, we are considering the Worst
Case.

We have to know the latency in worst possible case.

Real-Time Real-Time - concepts 49 / 89

Let’s add some load

$ cat /proc/loadavg
5.02 3.76 2.04 2/47 432

• I/O on SD card:

cat /dev/mmcblk0p1 > /dev/null

• sending ASCII data to serial console:

cat /dev/zero | od -v

• send network packages:

ping -f <ip address>

WARNING!: these tests just generate IRQ, they are not showing real-life load.
Use real-case tests.

Real-Time Real-Time - measurements 50 / 89

Results under load

Real-Time Real-Time - measurements 51 / 89

Linux:
Separates:

• logic (in userspace)

• mechanisms (provided by kernel)

Real-Time Real-Time - measurements 52 / 89

Interrupt-based I/O

Real-Time Real-Time - measurements 53 / 89

Interrupt-based I/O - another view

• 03_cinout.c

• 04_real_cinout.c

• In case of GPIO: /sys/class/gpio/ can be used as well (poll(),
read(), write()).

Real-Time Real-Time - measurements 54 / 89

Userspace - results under load

Real-Time Not so good results ... 55 / 89

Userspace - results under load

Real-Time Not so good results ... 56 / 89

Where is latency coming from?

Real-Time Where is latency coming from? 57 / 89

How to achieve Real-Time in Linux?

1 Micro-kernel approach:

• RTLinux -
http://en.wikipedia.org/wiki/RTLinux,
there used to be open-source version:
http://www.rtlinuxfree.com/.

• Adeos/I-Pipe -
http://home.gna.org/adeos/ - common
base.

• RTAI - https://www.rtai.org/ - minimum
possible latency.

• Xenomai - http://www.xenomai.org/ -
provides various APIs.

2 In-kernel approach:

• RT PREEMPT -
https://rt.wiki.kernel.org
http://www.kernel.org/pub/linux/
kernel/projects/rt/

Real-Time How to achieve Real-Time in Linux? 58 / 89

http://en.wikipedia.org/wiki/RTLinux
http://www.rtlinuxfree.com/
http://home.gna.org/adeos/
https://www.rtai.org/
http://www.xenomai.org/
https://rt.wiki.kernel.org
http://www.kernel.org/pub/linux/kernel/projects/rt/
http://www.kernel.org/pub/linux/kernel/projects/rt/

. . . or use hardware solutions

1 Dual processor/microcontroller approach

• Dual/Quad Core i.MX6 - devote one core to
Real-Time task.

• Additional µC - add (cheap) microcontroller and
run RTOS on it (ore bare-metal app).

2 Heterogenous cores:

• Freescale Vybrid

Real-Time How to achieve Real-Time in Linux? 59 / 89

ICS using PREEMPT-RT

ICS using PREEMPT-RT 60 / 89

Plan

5 ICS using PREEMPT-RT
PREEMPT-RT
Implementation
Internal latency measurements
Demo

ICS using PREEMPT-RT 61 / 89

1 Standard kernel

2 Interrupts as threads

Kernel Features --->
Preemption Mode (Complete Preemption ()) --->

(X) Complete Preemption (Real-Time)

-*- Thread Softirqs /* 2.6.33 */
-*- Thread Hardirqs

ICS using PREEMPT-RT PREEMPT-RT 62 / 89

04 under load

ICS using PREEMPT-RT PREEMPT-RT 63 / 89

04 under load

ICS using PREEMPT-RT PREEMPT-RT 64 / 89

• Real-Time != Real Fast
Maximum latency (Worst Case) is limited, but minimum latency is bigger.

• Kernel with RT-PREEMPT patch, does not make the whole system Real-Time

• Specially designed application and POSIX RT-API should be used:

• Defined: IEEE 1003.1b. Linux supports it.
• Scheduler
• Memory locking
• Shared memory
• RT signals
• Semaphores (priority inheritance)
• Timers (esp. CLOCK_MONOTONIC)
• AIO

ICS using PREEMPT-RT PREEMPT-RT 65 / 89

Tips&Tricks

Use appropriate programming language

• C - but make it object-oriented (for reference - Linux kernel: buses, drivers,
classes etc.)

• C++ - would be nice too

• cannot be utilized inside kernel or as Xenomai kernel process
• can be executed as bare-metal µC or in userspace

• Utilize design patterns.

ICS using PREEMPT-RT Implementation 66 / 89

Tips&Tricks

Set the proper scheduler class and priority

struct sched_param sp;
sp.sched_priority = MY_PRIORITY;
ret = sched_setscheduler(0, SCHED_FIFO, &sp);

• Interrupts run in threads, default to: SHCED_FIFO/50.

• . . . do not forget to fine-tune them.

• SCHED_DEADLINE can be helpful too.

ICS using PREEMPT-RT Implementation 67 / 89

Lock all memory (mlock)

mlockall(MCL_CURRENT|MCL_FUTURE);

Try to cause page_fault (allocated memory, data from files)

buf = malloc(BUF_SIZE);
memset(buf, 0, BUF_SIZE);

• Memory is locked, so it stays on place.

ICS using PREEMPT-RT Implementation 68 / 89

Prefault the stack (it can be shared within process we have forked from)

/* GCC will not inline this function */
__attribute__ ((noinline)) void stack_prefault(void)
{

unsigned char tab[MAX_SAFE_STACK];
/* GCC will omit optimizations */
asm("");
memset(tab, 0, MAX_SAFE_STACK);

}
/*...*/
stack_prefault();

ICS using PREEMPT-RT Implementation 69 / 89

Use POSIX timer to do the fsm step (in a proper way)

#define NSEC_IN_SEC 1000000000l
#define INTERVAL 1000000l
struct timespec timeout;

clock_gettime(CLOCK_MONOTONIC, &timeout);
while (1) {

do_fsm_step(&some_data);
timeout.tv_nsec += INTERVAL;
if (timeout.tv_nsec >= NSEC_IN_SEC) {

timeout.tv_nsec -= NSEC_IN_SEC;
timeout.tv_sec++;

}
clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,

&timeout, NULL);
}

ICS using PREEMPT-RT Implementation 70 / 89

ICS using PREEMPT-RT Implementation 71 / 89

Utilize AIO to write or read data (eg. sensor data, production logs)

struct aiocb {
int aio_fildes //File descriptor.
volatile void *aio_buf //Location of buffer.
/* ... */

};
aio_write(struct aiocb *);
aio_return(struct aiocb *);

ICS using PREEMPT-RT Implementation 72 / 89

ICS using PREEMPT-RT Implementation 73 / 89

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 50 100 150 200

Ilo
ść

 p
ró

b
e
k

Opóźnienie (µs)

Freescale i.MX53 3.4.25-rt36 PREEMPT RT
Opóźnienia: 14µs min, 32µs avg, 111µs max, 0 próbek poza wykresem.

CPU 1

ICS using PREEMPT-RT Internal latency measurements 74 / 89

Buildroot demo.

QT rapid development demo.

LASER ICS using PREEMPT-RT

ICS using PREEMPT-RT Demo 75 / 89

ICS using Xenomai

ICS using Xenomai 76 / 89

Plan

6 ICS using Xenomai
How does it work?
Internal latency measurements
Demo

ICS using Xenomai 77 / 89

Adeos/I-Pipe

• I-Pipe take control over all hardware interrupts

• All system calls are passed through (I-Pipe)

• Events are dispatched to different I-pipe domains.

ICS using Xenomai How does it work? 78 / 89

$ cat /proc/ipipe/Xenomai
+----- Handling ([A]ccepted, [G]rabbed,
|+---- Sticky [W]ired, [D]iscarded)
||+--- Locked
|||+-- Exclusive
||||+- Virtual

[IRQ] |||||
38: W..X.

418: W...V
[Domain info]
id=0x58454e4f
priority=topmost

$ cat /proc/ipipe/Linux
0: A....
1: A....

...
priority=100

ICS using Xenomai How does it work? 79 / 89

Xenomai

There are actually two kernels. Process can migrate between them:

• Xenomai

• Linux

ICS using Xenomai How does it work? 80 / 89

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 50 100 150 200

Ilo
ść

 p
ró

b
e
k

Opóźnienie (µs)

Freescale i.MX53 3.0.36 Xenomai
Opóźnienia: µs min, µs avg, µs max, próbek poza wykresem.

CPU 1

ICS using Xenomai Internal latency measurements 81 / 89

LASER ICS using Xenomai

ICS using Xenomai Demo 82 / 89

ICS using multiple processors (cores)

ICS using multiple processors (cores) 83 / 89

Plan

7 ICS using multiple processors (cores)
Demo

ICS using multiple processors (cores) 84 / 89

• Run MQX-Lite on Cortex-M0 to do the real-time stuff. Run Linux on more
powerfull processor.

• Vybrid: Linux runs on Cortex-A5, MQX on Cortex-M4

ICS using multiple processors (cores) 85 / 89

Vybrid

ICS using multiple processors (cores) 86 / 89

ICS using multiple processors (cores) 87 / 89

LASER ICS using Cortex-M0.

LASER ICS using Vybrid.

ICS using multiple processors (cores) Demo 88 / 89

Thank You!

http://bis-linux.com/dwf_waw2013

This presentation, source code and additional materials.

http://bis.org.pl

My books.

http://bis-linux.com/

Embedded Linux and Real-Time - training and support.

Contact

marcin@bis.org.pl

Questions?
ICS using multiple processors (cores) Thank You! 89 / 89

http://bis-linux.com/dwf_waw2013
http://bis.org.pl
http://bis-linux.com/

	Why to consider Linux?
	Pros ...
	... and cons

	Let's build ICS
	Case 1 - Weight dosing
	Case 1 - analysis
	Case 2 - Laser
	Case 2 - analysis

	What we will need (hardware + tools)?
	Options
	MQX Lite
	Linux
	Linux + MQX

	Real-Time
	Theory
	Latency tests
	Testing circuit
	Unmodified Linux kernel
	Real-Time - concepts
	Real-Time - measurements
	Not so good results ...
	Where is latency coming from?
	How to achieve Real-Time in Linux?

	ICS using PREEMPT-RT
	PREEMPT-RT
	Implementation
	Internal latency measurements
	Demo

	ICS using Xenomai
	How does it work?
	Internal latency measurements
	Demo

	ICS using multiple processors (cores)
	Demo

